
remote sensing  

Article

VIIRS-Derived Water Turbidity in the Great Lakes

Seunghyun Son 1,2,* and Menghua Wang 1

1 National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information
Service, Center for Satellite Applications and Research, E/RA3, 5830 University Research Ct., College Park,
MD 20740, USA; Menghua.Wang@noaa.gov

2 Cooperative Institute for Research in the Atmosphere at Colorado State University, Fort Collins,
CO 80523, USA

* Correspondence: Seunghyun.Son@noaa.gov; Tel.: +1-301-683-3324; Fax: +1-301-683-3301

Received: 29 April 2019; Accepted: 14 June 2019; Published: 18 June 2019
����������
�������

Abstract: Satellite ocean color products from the Visible Infrared Imaging Radiometer Suite (VIIRS)
onboard the Suomi National Polar-orbiting Partnership (SNPP) since 2012 and in situ water turbidity
measurements from the U.S. Environmental Protection Agency’s Great Lakes Environmental Database
System are used to develop a water turbidity algorithm for satellite ocean color applications in the
Great Lakes for water quality monitoring and assessments. Results show that the proposed regional
algorithm can provide reasonably accurate estimations of water turbidity from satellite observations
in the Great Lakes. Therefore, VIIRS-derived water turbidity data are used to investigate spatial and
temporal variations in water turbidity for the entirety of the Great Lakes. Water turbidity values
are overall the highest in Lake Erie, moderate in Lake Ontario, and relatively low in lakes Superior,
Michigan, and Huron. Significantly high values in water turbidity appear in the nearshore regions,
particularly in Thunder Bay (Lake Superior), Green Bay (Lake Michigan), and Saginaw Bay (Lake
Huron). Seasonal patterns of water turbidity are generally similar in lakes Superior, Michigan, Huron,
and Ontario, showing relatively high values in the spring and autumn months and lows in the winter
season, while the seasonal pattern in Lake Erie is apparently different from the other lakes, with the
highest value in the winter season and the lowest in the summer season. A strong interannual
variability in water turbidity is shown in the time series of the VIIRS-derived water turbidity data for
most of the lakes.
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1. Introduction

The world’s largest lakes, the Great Lakes, contain one-fifth of world’s surface freshwaters, covering
about 245,000 km2 (Figure 1). The Great Lakes provide drinking water, food, and transportation to
nearly one-eighth of the population of the United States and one-third of the population of Canada,
and therefore, they have significant contributions to the economic and recreational activities of North
America. The Great Lakes are influenced by riverine inputs—including suspended sediments and
organic materials from nearby cities and industries—and shoreline erosion, which can alter water
quality and enhance the eutrophication [1–4]. With the successful launches of satellite ocean color
sensors, such as the Coastal Zone Color Scanner (CZCS) [5,6], the Sea-viewing Wide Field-of-view
Sensor (SeaWiFS) [7], the Moderate Resolution Imaging Spectroradiometer (MODIS) [8] on the Terra and
Aqua, the Visible Infrared Imaging Radiometer Suite (VIIRS) [9] on the Suomi National Polar-orbiting
Partnership (SNPP) and NOAA-20, the Ocean and Land Colour Instrument (OLCI) on the Sentinel-3A
and Sentinel-3B, and the Second-Generation Global Imager (SGLI) on the Global Change Observation
Mission-Climate (GCOM-C), satellite remote sensing observations have been playing important roles
in the monitoring and investigating of water quality properties and marine ecological features in
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a broad area of the Great Lakes with both high spatial and temporal scales. In particular, satellite
algorithms have been developed for various applications in the Great Lakes, such as estimating water
quality properties and biogeochemical parameters [10–16] and monitoring harmful algal blooms
(HABs) [17–19]. An ice-detection algorithm for the Great Lakes has been developed for satellite ocean
color data processing for MODIS–Aqua and VIIRS–SNPP [20]. The ice-detection method can identify
ice-contaminated pixels well and provide more accurate satellite ocean color products during the
winter season in the Great Lakes [20]. As impacts of climate and environmental changes on the Great
Lakes ecosystem are more recognized [21–24], there are increased interests and concerns for routine
water clarity or water turbidity observations. Recent studies have demonstrated that the water clarity
measurements from satellite observations using the Secchi depth [12,16,25] can be related to the water
diffuse attenuation coefficient at the wavelength of 490 nm Kd(490) [26,27]. Those studies were mostly
focused on an individual or upper lake in the Great Lakes or on the long-term decadal changes in water
clarity rather than spatial and seasonal distributions in the entirety of the Great Lakes. In addition,
Secchi depths are measured by visual inspection, and although the Secchi depth is a useful indicator to
estimate water clarity, there may be more uncertainties in Secchi depth observations compared with
other parameters from instrumental observations. Thus, there is still a need to improve the retrieval
algorithm for satellite water turbidity products for the Great Lakes.

In this study, using the in situ water turbidity measurements and the VIIRS-derived ocean color
products, a regional water turbidity algorithm for the Great Lakes from satellite ocean color observations
is developed. The proposed turbidity method is then applied to VIIRS–SNPP data from 2012 to 2018
to generate synoptic maps and a time series of the VIIRS-measured water turbidity in the Great Lakes.
We study and investigate VIIRS-derived water turbidity product data and images, and we generate a
time series to characterize spatial and temporal distributions of water turbidity in the Great Lakes.

Figure 1. Map of the Great Lakes with the marks (pink circles) indicating in situ data locations for water
turbidity measurements on the Visible Infrared Imaging Radiometer Suite (VIIRS)-derived climatology
Kd(490) image (2012–2018). Names of the five lakes are noted in the right side of lakes, and the map
of North America is also shown in the left bottom as the location of the Great Lakes indicated in the
red box.

2. Data and Methods

2.1. VIIRS–SNPP Ocean Color Data

VIIRS–SNPP ocean color Environmental Data Records (EDR or Level-2 data) [28,29] are routinely
produced from Sensor Data Records (SDR or Level-1B products) after sensor on-orbit calibrations [30,31]
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using the Multi-Sensor Level-1 to Level-2 (MSL12) ocean color data processing system, which is the
official VIIRS ocean color data processing system. MSL12 was originally developed for providing
consistent ocean color products from multiple satellite sensors [32–34]. VIIRS ocean color data from
2012 to 2018 over the entirety of the Great Lakes were generated using the MSL12 ocean color data
processing system with the combined near-infrared (NIR) and shortwave infrared (SWIR) atmospheric
correction algorithm [35–41]. VIIRS Level-2 data were remapped to a standard Mercator projection
at a 1-km spatial resolution after applying the refined regional ice-detection algorithm for the Great
Lakes [20] to remove ice-contaminated pixels during the winter season. The remapped VIIRS data
were used to generate various composite images of water turbidity products in the Great Lakes.
Monthly composites of VIIRS-derived water turbidity products from 2012 to 2018 were used for
climatology monthly composite images. Then, the climatology composite image was generated using
the climatology monthly composite images. In addition, the time series of mean water turbidity values
for the individual lake from the monthly composite images of the VIIRS-derived water turbidity
data were produced for the Great Lakes. Pixels with a 5 × 5 box centered at a location of in situ
measurements were extracted from VIIRS Level-2 data after applying the five flags to mask high
uncertainty data to be compared with the in situ turbidity measurements for evaluation and validation.
Specifically, these five flags are high sensor-zenith angle, high solar-zenith angle, high sun glint, stray
light, and absorbing aerosols. For the satellite in situ data matchup analyses, we have followed the
procedure discussed in Wang et al. [41].

2.2. In Situ Water Turbidity Measurements

In situ water quality parameters are periodically measured in the Great Lakes by the U.S.
Environmental Protection Agency (EPA) in the spring (April or May) and summer (August or
September). In situ water turbidity measurements in the Nephelometric Turbidity Unit (NTU) were
downloaded for all of the lakes for the period of 1983–2017 from the EPA’s Great Lake Environmental
Database System (GLENDA) to develop a regional water turbidity algorithm for satellite data
applications (Figure 1). The in situ water turbidity data have also been used to validate the new
regional satellite water turbidity algorithm for the Great Lakes, as well as evaluate the VIIRS-derived
water turbidity products.

3. Results

3.1. Comparison of VIIRS-Derived Kd(490) and In Situ-Measured Water Turbidity

Since we do not have in situ radiometric measurements for the Great Lakes, the in situ water
turbidity measurements from GLENDA were compared with the VIIRS-derived ocean color products
using the NIR–SWIR atmospheric correction algorithm [37,39] to derive a regional water turbidity
algorithm for satellite ocean color applications. After investigating various approaches including
comparisons with VIIRS-derived chlorophyll-a and combinations of normalized water-leaving radiance
nLw(λ) at various wavelengths, it was found that the Great Lakes in situ water turbidity data have
a strong correlation with the VIIRS-derived Kd(490) data that are derived using the semi-analytical
Kd(490) model [27]. It should be noted that for highly turbid waters (e.g., Lake Okeechobee in Florida),
nLw(λ) at the NIR bands should be used for deriving water turbidity [42,43]. The in situ turbidity
measurements corresponding to the valid VIIRS-derived Kd(490) in the period of 2012–2017 are available
as 74 data points. Figure 2 provides the matchup comparison results between in situ water turbidity
and the VIIRS-derived Kd(490) data. The comparison results show that water turbidity measurements
are strongly correlated to VIIRS-derived Kd(490) in the Great Lakes (as expected), with a correlation
coefficient of 0.93. Therefore, a new regional water turbidity algorithm for the Great Lakes, covering
water turbidity values of 0.1 to 23.0 NTU, can be expressed as

Turbidity = 10(0.523+1.294X+0.306X2+0.205X3) (1)



Remote Sens. 2019, 11, 1448 4 of 13

where X = log[Kd(490)]. Therefore, water turbidity is effectively related to satellite-measured nLw(λ)
at the blue, green, and red bands that are used for deriving Kd(490) data [27]. For verification
and evaluation, VIIRS-derived water turbidity data using Equation (1) for the Great Lakes were
compared with the in situ measurements. Figure 3a provides the matchup comparison results between
VIIRS-derived and in situ-measured water turbidity data. VIIRS-derived water turbidity data are in
agreement with those from the in situ measurements. The mean and median ratios of the VIIRS-derived
to the in situ-measured turbidity data in the Great Lakes are 1.100 and 1.002, respectively. Comparisons
of histogram results for the VIIRS-derived and in situ-measured water turbidity data are also shown in
Figure 3b. Since most of the in situ water turbidity data were measured in the months of May and
August, all daily VIIRS-derived water turbidity data from these two months in 2012–2018 were used to
derive the VIIRS histogram in Figure 3b. The total numbers of the VIIRS-derived and in situ-measured
water turbidity data that are used for the histograms are about 2.8 × 107 and 613, respectively. Results
in Figure 3 show that the distribution of the VIIRS-derived water turbidity is well matched with that of
the in situ measurements. Both VIIRS and in situ water turbidity values range from ~0.06 to 20 NTU in
the histograms (Figure 3b), and both peaks are located around 0.1–0.2 NTU. Thus, VIIRS-derived water
turbidity data using the new proposed regional algorithm can be applied to study and characterize
water properties in the Great Lakes.

Figure 2. In situ-measured water turbidity (NTU) as a function of VIIRS–Suomi National Polar-orbiting
Partnership (SNPP)-derived Kd(490) for the Great Lakes.

Figure 3. VIIRS–SNPP-derived water turbidity data (2012–2018) in the Great Lakes compared with the
in situ turbidity measurements for (a) matchup comparison and (b) histogram results.
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3.2. VIIRS-Derived Monthly Climatology Water Turbidity Images

Figure 4 provides VIIRS-derived monthly climatology (2012–2018) water turbidity images in the
Great Lakes using the NIR–SWIR atmospheric correction in MSL12 and a newly proposed regional
turbidity algorithm (Equation (1)). Overall, the spatial pattern shows that water turbidity is generally
low in Lake Michigan and Lake Huron, and it is relatively high in Lake Superior and Lake Ontario.
The highest water turbidity value appears in Lake Erie during all months compared to those in the other
lakes. However, seasonal and spatial variations in water turbidity vary and depend on the specific
lake. In most areas of lakes Superior, Michigan, Huron, and Ontario, the water turbidity is the lowest
during the winter months (December to January), and their values increase in the spring. A slight
decrease in the water turbidity appears in the summer. In the autumn, the water turbidity increases
again, and the highest value appears in October and November. However, seasonal patterns in the
nearshore waters, e.g., Thunder Bay, Green Bay, and Saginaw Bay, are somewhat different from those
in middle of the lakes, showing the highest in the winter and relatively lower in the summer. Unlike
the other lakes, the water turbidity in Lake Erie is the highest during the winter months, which is
possibly due to shallow bathymetry [3]. The water turbidity decreases in the spring and is the lowest
in the summer. In spatial distribution, there is a big contrast between the western and eastern side of
Lake Erie (higher in the western to middle area and lower in the eastern area).

Figure 4. VIIRS–SNPP-measured monthly climatology (2012–2018) turbidity images for the Great
Lakes for the months of (a)–(l) as January–December.
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3.3. Seasonal and Interannual Variability in Water Turbidity

Mean water turbidity values for the entire area of each individual lake in the Great Lakes were
derived from monthly and climatology monthly composites of the VIIRS-derived water turbidity to
study the seasonal and interannual variability. Figure 5a–e provides the seasonal distribution of the
VIIRS-derived monthly water turbidity climatology (2012–2018) for lakes Superior, Michigan, Huron,
Erie, and Ontario, respectively. Figure 5f provides the corresponding standard deviation (STD) values
for these lakes from the monthly climatology water turbidity data. The average seasonal patterns
of water turbidity are similar in lakes Superior, Michigan, and Huron, showing that water turbidity
values are the lowest in the winter (December to February) and the highest in the month of October.
The water turbidity is relatively higher in the spring and slightly decreased in the summer (July or
August). The seasonal pattern in Lake Ontario is generally similar to but somewhat different from
that in the three other lakes (Superior, Michigan, and Huron), with the highest turbidity in September.
As described above and shown also in Figure 4, the seasonal pattern of water turbidity in Lake Erie is
distinctly different from those in the other lakes. In Lake Erie, specifically, the highest water turbidity
values appeared in January to February, while the lowest values were during the summer months
(June to August).

Figure 5. VIIRS–SNPP-derived mean climatology (2012–2018) monthly water turbidity in the Great
Lakes for (a) Lake Superior, (b) Lake Michigan, (c) Lake Huron, (d) Lake Erie, and (e) Lake Ontario.
Plot (f) shows standard deviation (STD) values from climatology monthly water turbidity data for the
five corresponding lakes. Filled circles in (a)–(e) highlight non-winter months, and SU, MI, HU, ER,
and ON in (f) stand for lakes Superior, Michigan, Huron, Erie, and Ontario, respectively.

Time series of monthly averages in the VIIRS-derived water turbidity for the five individual lakes
in the Great Lakes were constructed (Figure 6). All valid pixels over waters in the individual lakes were
spatially and temporally averaged to produce the corresponding monthly mean value for each lake.
The time series results provide apparent interannual variability in the VIIRS-derived water turbidity in
the Great Lakes. Significantly high peaks of water turbidity appeared in May and October 2014 for
Lake Superior, October 2014 for Lake Michigan, and September 2015 for Lake Ontario. In Lake Erie,
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the highest turbidity values generally appeared in the winter (December to February), and the lowest
values are in the summer (June to August). On the other hand, relatively high turbidity peaks were
present in October 2015 and March 2017. The apparent higher water turbidity values may be related to
local physical and/or biological events such as high winds, river discharge, or phytoplankton blooms.

3.4. VIIRS-Derived Climatology Water Turbidity

A climatology (from 2012 to 2018) map of the VIIRS-derived water turbidity for the Great Lakes
is provided in Figure 7. General spatial distributions from the VIIRS-derived water turbidity image
are similar to the climatology monthly images shown in Figure 4. The water turbidity is the highest in
Lake Erie, with mean and median values of 2.87 and 2.04 NTU over the entire Lake Erie, respectively,
while the relatively lower values appeared in Lake Michigan (mean and median values of ~0.48 and
~0.26 NTU) and Lake Huron (mean and median values of ~0.55 and ~0.25 NTU). For Lake Superior,
mean and median values of water turbidity are 0.51 and 0.32 NTU, respectively, while they are 0.50 and
0.41 NTU for Lake Ontario, respectively. Although water turbidity values are generally low in most
areas in lakes Superior, Michigan, and Huron (around 0.15–0.25 NTU), significantly high values in water
turbidity are shown in some coastal bays of those lakes with values >~10 NTU (e.g., Thunder Bay, Green
Bay, and Saginaw Bay). Overall, Lake Erie has the highest water turbidity value. In addition, water
turbidity values are apparently much higher in the western area of Lake Erie than that in the eastern area.

Figure 6. Time series of the VIIRS–SNPP-derived mean monthly water turbidity in the Great Lakes for
(a) Lake Superior, (b) Lake Michigan, (c) Lake Huron, (d) Lake Erie, and (e) Lake Ontario.
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4. Discussions

There are a few studies of the seasonal distribution of water turbidity in the entirety of the Great
Lakes. A recent study investigated the long-term water clarity changes in the Great Lakes using the
multi-sensors satellite ocean color data [12]. In the study, the water clarity changes are based on
the satellite-derived Secchi depth for the Great Lakes, which could be related to the water turbidity.
The study separated the Great Lakes into offshore and nearshore areas for the seasonal distributions
of the Secchi depth, while our results are based on the mean values of the entire lake. However,
the general seasonal distribution of the Secchi depth seems to be inversely correlated to the water
turbidity from our results. For example, the seasonal pattern of the MODIS-derived Secchi depth in
Lake Erie in Binding et al. [12] is evidently well correlated inversely to that of the VIIRS-derived water
turbidity in Figure 5d. It has been shown that large-scale whiting events in August or September have
influenced water clarity in lakes Michigan and Ontario [44,45]. It seems that the significantly high
turbidity in September 2015 in Lake Ontario (Figure 6e) was related to the whiting event. Indeed,
the water turbidity in Lake Erie had strong influences from suspended sediments and cyanobacterial
blooms [17,18,46,47].

Figure 7. VIIRS–SNPP-measured climatology (2012–2018) water turbidity in the Great Lakes.

The highest water turbidity in Lake Erie can be related to the fact that it is the shallowest bathymetry
lake in the Great Lakes. Thus, suspended sediments play a more major role in Lake Erie than any of
the other lakes [46]. In addition, massive cyanobacteria harmful algal blooms have occurred annually
in Lake Erie since the mid 1990s [17,18], which can have significant influences on water turbidity in
the summer. The relatively high turbidity value in October 2015 in Lake Erie was likely caused by
a large amount of sediment due to extensive wind mixing [48]. It has been reported that there were
significant long-term trends in water quality properties in the Great Lakes [12,16,22,24]. This study is
based on VIIRS ocean color data, which are available only from 2012 (about seven years). Thus, it is
not possible to investigate long-term trends in water turbidity using the VIIRS data. Instead, in situ
water turbidity measurements are available for all years since 1983 in the Great Lakes. Water turbidity
data in the individual lakes were analyzed for four time periods, i.e., 1983–1990, 1991–2000, 2001–2010,
and 2011–2017, to compare decadal changes in water turbidity with results from the previous studies
in the Great Lakes (Table 1). While no consistent trend in water turbidity is indicated in Lake Superior
and Lake Ontario, apparent decreasing trends in water turbidity appeared in Lake Michigan and
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Lake Huron. The decreasing trend of water turbidity in lakes Michigan and Huron is consistent with
results from other studies, with an increasing trend in Secchi depth and transparency [12,22] and a
decreasing trend in the water diffuse attenuation coefficient [16,24]. The decreased water turbidity
could be caused by a reduced phytoplankton biomass and primary production [21,49]. In Lake Erie,
on the other hand, water turbidity has apparently increased since the 2000s, particularly in spring
months. It has been found that significant decreases in water clarity in the western basin of Lake Erie
appeared in spring [50], which seems to be driven by large sediment loads into the western basin and
the resuspension of inorganic particulates. However, it is noted that total number of water turbidity
measurements varied depending on lakes and time periods. Thus, the mean turbidity values for each
lake and each period might not be represented evenly.

Table 1. Mean (AVG), standard deviation (STD), and data number (No) of in situ water turbidity in
the individual lake of the Great Lakes for the four time periods, i.e., 1983–1990, 1991–2000, 2001–2010,
and 2011–2017, for all months, spring months, and summer months (total data number is 4708).

Lake Period

ALL SEASON SPRING SUMMER

Turbidity
(NTU)

(AVG ± STD)
No

Turbidity
(NTU)

(AVG ± STD)
No

Turbidity
(NTU)

(AVG ± STD)
No

Superior

1983–1990 - - - - - -
1991–2000 0.15 ± 0.12 237 0.15 ± 0.15 129 0.15 ± 0.08 108
2001–2010 0.26 ± 0.17 249 0.29 ± 0.20 132 0.24 ± 0.11 117
2011–2017 0.24 ± 0.10 203 0.24 ± 0.12 91 0.22 ± 0.09 112

Michigan

1983–1990 0.41 ± 0.21 447 0.41 ± 0.22 184 0.41 ± 0.21 263
1991–2000 0.48 ± 0.40 323 0.38 ± 0.21 143 0.56 ± 0.49 180
2001–2010 0.35 ± 0.17 138 0.37 ± 0.16 60 0.33 ± 0.18 78
2011–2017 0.23 ± 0.11 130 0.23 ± 0.15 63 0.22 ± 0.07 67

Huron

1983–1990 0.33 ± 0.17 389 0.44 ± 0.17 154 0.26 ± 0.12 235
1991–2000 0.31 ± 0.17 191 0.40 ± 0.16 115 0.18 ± 0.07 76
2001–2010 0.27 ± 0.13 174 0.32 ± 0.14 90 0.22 ± 0.08 84
2011–2017 0.21 ± 0.15 135 0.23 ± 0.18 59 0.20 ± 0.11 76

Erie

1983–1990 2.65 ± 4.28 668 3.51 ± 5.42 281 2.03 ± 3.07 387
1991–2000 3.28 ± 5.44 395 4.44 ± 6.36 259 1.08 ± 1.29 136
2001–2010 4.38 ± 7.88 303 6.25 ± 9.60 172 1.91 ± 3.50 131
2011–2017 3.99 ± 6.94 221 6.05 ± 9.10 105 2.13 ± 3.13 116

Ontario

1983–1990 0.99 ± 0.61 155 0.40 ± 0.23 63 1.38 ± 0.44 92
1991–2000 0.35 ± 0.22 143 0.26 ± 0.14 79 0.47 ± 0.23 64
2001–2010 0.44 ± 0.37 118 0.29 ± 0.18 59 0.59 ± 0.44 59
2011–2017 0.56 ± 0.44 89 0.26 ± 0.13 38 0.79 ± 0.45 51

It is noted that daily mean valid pixels in the VIIRS-derived ocean color products are considerably
small during the winter season in the Great Lakes (e.g., < ~10% in November, < ~4% in December and
January, and < ~8% in February) due to the severe weather conditions such as clouds, snow, and ice
covers (Figure 8). Thus, the monthly mean water turbidity values from VIIRS composite images during
the months of November to February in the Great Lakes in Figures 5 and 6 may not be representative
for all of the lakes. In fact, the water clarity study by Binding et al. [12] also excluded the satellite data
from November to February for the long-term changes in the Great Lakes.
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Figure 8. Mean valid pixels of daily VIIRS–SNPP-derived ocean color data in each month for (a) Lake
Superior, (b) Lake Michigan, (c) Lake Huron, (d) Lake Erie, (e) Lake Ontario, and (f) all lakes.

Another concern is the spatial differences of the VIIRS-derived water turbidity in each lake.
The monthly mean of the water turbidity could be influenced by relatively high turbidity in the shallow
bays, such as Green Bay and Saginaw Bay, or regional massive blooms such as the cyanobacteria
harmful algal blooms in Lake Erie. It is particularly noted that the main objective of this study is to
derive a regional water turbidity algorithm from VIIRS ocean color measurements in the Great Lakes
and to examine the general spatial and temporal distributions of the VIIRS-derived water turbidity
maps using the proposed algorithm. Some more specific investigations of the quantitative patterns in
the water turbidity for separated areas in the Great Lakes, e.g., nearshore or offshore, will need to be
carried out in a future study.

5. Conclusions

A regional water turbidity algorithm for the satellite ocean color applications has been developed
for the Great Lakes using a robust relationship between the in situ water turbidity measurements
and the water diffuse attenuation coefficient at the wavelength of 490 nm, Kd(490), from the VIIRS
ocean color observations. The proposed algorithm for satellite ocean color applications can reasonably
measure water turbidity in the Great Lakes. Results show that VIIRS-derived water turbidity data
using the proposed regional algorithm are well correlated to the in situ water turbidity measurements
in the Great Lakes. VIIRS-derived water turbidity images provide synoptic maps of water turbidity in
the Great Lakes to study spatial and temporal variability of water turbidity in the entirety of the Great
Lakes. Results show that higher water turbidity values appeared in the nearshore waters including
Thunder Bay, Green Bay, and Saginaw Bay. The highest water turbidity in Lake Erie seems to be strongly
related to suspended sediments due to the shallow bathymetry and frequent massive cyanobacterial
blooms in the lake. The relatively higher water turbidity values in Lake Ontario, compared with
those in lakes Superior, Michigan, and Huron, may be related to phytoplankton blooms and whiting
events. In addition, time series of monthly averages of the VIIRS-derived water turbidity data provide
a strong interannual variability in the Great Lakes. This study has demonstrated that the proposed
regional water turbidity algorithm can be effectively used to monitor, characterize, and quantify water
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turbidity in the Great Lakes using VIIRS ocean color data. Furthermore, to fully assess long-term
decadal water turbidity properties and biogeochemical processes in the Great Lakes, as well as its
interaction with human activities and climate variability, it will be useful to generate datasets using
satellite observations from the past (historical) (e.g., CZCS, SeaWiFS), present (MODIS, VIIRS, OLCI,
SGLI, etc.), and future satellite ocean color data with refined water turbidity algorithms.
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